Vsparticle B.V.

Nanoprinter for Green Hydrogen - Environmental

SHARE

VSP-P1 Nanoprinter accelerates the development of efficient catalyst coated membranes

Most popular related searches

Development of efficient catalyst coated membranes (CCMs) is crucial for the transition towards a hydrogen-based, low carbon economy. Conventional CCM production processes require multiple steps and high loadings of scarce metals. To tackle this challenge, VSPARTICLE introduces membranes. By combining spark ablation, a vapor-based nanoparticle synthesis method, with additive manufacturing, production process of CCMs is simplified and catalyst loading is reduced without compromising performance or durability.

Development of High Performing Catalyst Coated membranes for PEM water electrolysis

PEM water electrolysis is one of the applications that has gained a lot of interest recently. However, market penetration is hindered because PEM electrolysers rely on the use of scarce and expensive noble metal catalysts, such as iridium. As a solution to this challenge, iridium catalyst coated membranes were developed using VSPARTICLE’s technology and tested by an external party in a single-cell PEM water electrolyser. Results proved that less catalyst loading was required compared to the commercially available standard. More specifically, the Ir-speficic power density was reduced up to an order of magnitude and durability was good based on three different degradation protocols.

  • Outstanding performance with up to an order of magnitude reduction in catalyst loading
  • Single-step and ink-free coating process
  • Superior durability and lifetime performance

VSPARTICLE introduces a new product, the VSP-P1 Nanoprinter. The VSP-P1 is an R&D platform for material development and small-scale production testing of nanoporous thin films/layers with a high surface-to-volume ratio. The VSP-P1 contains an integrated VSP-G1 Nanoparticle Generator as the nanomaterial production source. The technology is scalable and a next generation of the VSP-P1 with increased material output is already under development

Contact supplier

Drop file here or browse