Inderscience Publishers

Inderscience Publishers

Fuel reduction potential of energy management for vehicular electric power systems


In the near future a significant increase in electric power consumption in vehicles is to be expected. To limit the associated increase in fuel consumption and exhaust emissions, smart strategies for the generation, storage/retrieval, distribution and consumption of the electric power can be used. This paper considers a vehicle configuration with a conventional drive train. Two energy management strategies that control the alternator power are analysed: a regenerative braking strategy and a more advanced strategy based on optimisation techniques. The potential behind these strategies is analysed by studying the typical characteristics of components that are directly related to the energy flow in the vehicle. It is shown that operating the internal combustion engine at the highest efficiency will not inherently lead to the lowest fuel consumption. Subsequently, engineering rules are presented to evaluate the performance that can be expected for each strategy. The component characteristics are included as input parameters to make the method generally applicable. To show the value of the engineering rules, the potential fuel reduction is computed for a specific vehicle configuration and driving cycle and compared with simulations results.

Keywords: vehicular electric power systems, energy management, regenerative braking, fuel reduction, hybrid electric vehicles, mild HEV, alternative propulsion, optimisation, fuel consumption, simulation

Customer comments

No comments were found for Fuel reduction potential of energy management for vehicular electric power systems. Be the first to comment!