Duryea Technologies

DuryeaBuck/Boost DC-DC Regulator

SHARE
Duryea’s buck/boost regulators are versatile DC/DC converters primarily used for applications such as battery charging and regenerative braking. These regulators can step down (buck) or step up (boost) voltage levels to meet specific requirements. The integrated electronics do not offer speed control or current limiting, making external devices necessary for those functions. With two-stage power conversion topology, the regulators avoid high-frequency PWM application, allowing them to operate at higher frequencies efficiently. Features include built-in filtering and interleaved phases in parallel, which significantly reduce current ripple and minimize bus capacitance requirements. Advanced models use aluminum-clad PCBs for MOSFETs and IGBTs, lowering thermal impedance. The latest model offers a 36VDC nominal rating, 300A continuous current, and options for voltage and current limits. This regulator is useful in systems such as Integrated Starter/Alternator (ISA) setups, where it accommodates both motor and generator modes. Applications include battery charging from lower voltage sources like a 12-volt alternator to higher voltage batteries up to 36VDC, enhancing efficiency and performance.
Most popular related searches

Duryea’s brushless motor/generators employ an electronic commutator, used in the same manner as a brush DC machine. Unlike a brushless amplifier, the integrated electronics don’t provide speed control or current limiting. As a result, an external device is necessary for serving those functions and ensuring the desired output for applications such as battery charging. These items are essentially DC/DC converters. Buck regulators step down voltage, with a DC motor controller being the typical example. A boost regulator, employed in applications such as regenerative braking, step voltage up. A simple way of considering this is that buck regulators trade volts for amps, while boost regulators do the opposite.

Duryea’s two-stage power conversion topology doesn’t apply high-frequency PWM to the motor, thereby allowing the regulator, which has built-in filtering, to operate at frequencies far exceeding the norm for motor control. Further, state-of-the-art power supply design includes the use of interleaved phases working in parallel. These two features significantly reduce current ripple, which, in turn, reduces the amount of bus capacitance required, minimizing size.

Advanced power supplies also incorporate aluminum-clad circuit boards for MOSFETs and IGBTs to provide the lowest possible thermal impedance. However, these PCBs are single layer and limited to surface mount parts, which means control components and capacitors must be located on mating circuit boards.

The latest product has ratings of 36VDC, nominal, and 300A continuous. Dimensions are 6.25” x 3.25” x 4”, weight is 2.5 lbs. Buck, boost and throttle (with regen) modes can be selected, as can voltage and current limits. A version for boosting to 48VDC is also available.

One of the uses for the boost regulator function is to charge a higher voltage battery from a lower voltage source. A classic example of this is using a typical 12-volt alternator to charge a 24 or 36-volt battery pack. The advantages to this include the ability to operate a system with lower current or higher efficiency, with higher peak performance also possible. In effect, lower average power derived from the alternator is being used to provide much higher power for brief periods. For example, 300A @12VDC = 3.6kW, or 5hp, whereas 300A @24VDC = 7.2kW (9.6hp) and 300A @36VDC = 10.8kW, or 14.4hp.

A buck/boost regulator is also a key component of an Integrated Starter/Alternator (ISA) system. In this application, both motor (buck) and generator (boost) modes must be accommodated with voltage and current limits, just as is the case in a propulsion system with regenerative braking.

Mechanical factors also play into ISA systems. In particular, torque requirement, as well as maximum speed and voltage must be carefully considered. While it may seem attractive to generate a significant voltage at low speed, the voltage will surely be excessive at high speed. Further, because boost mode trades amps for volts, a substantial amount of current is needed at low speed/voltage to achieve a modest amount at a higher voltage. On a related note, this is why SolidSlot motor/generators, with their very high current capacity, are useful.